Engineering a dirhodium artificial metalloenzyme for selective olefin cyclopropanation
نویسندگان
چکیده
Artificial metalloenzymes (ArMs) formed by incorporating synthetic metal catalysts into protein scaffolds have the potential to impart to chemical reactions selectivity that would be difficult to achieve using metal catalysts alone. In this work, we covalently link an alkyne-substituted dirhodium catalyst to a prolyl oligopeptidase containing a genetically encoded L-4-azidophenylalanine residue to create an ArM that catalyses olefin cyclopropanation. Scaffold mutagenesis is then used to improve the enantioselectivity of this reaction, and cyclopropanation of a range of styrenes and donor-acceptor carbene precursors were accepted. The ArM reduces the formation of byproducts, including those resulting from the reaction of dirhodium-carbene intermediates with water. This shows that an ArM can improve the substrate specificity of a catalyst and, for the first time, the water tolerance of a metal-catalysed reaction. Given the diversity of reactions catalysed by dirhodium complexes, we anticipate that dirhodium ArMs will provide many unique opportunities for selective catalysis.
منابع مشابه
Stereoselective olefin cyclopropanation under aerobic conditions with an artificial enzyme incorporating an iron-chlorin e6 cofactor.
Myoglobin has recently emerged as a promising biocatalyst for catalyzing carbene-mediated cyclopropanation, a synthetically valuable transformation not found in nature. Having naturally evolved for binding dioxygen, the carbene transferase activity of this metalloprotein is severely inhibited by it, imposing the need for strictly anaerobic conditions to conduct these reactions. In this report, ...
متن کاملHighly diastereoselective and enantioselective olefin cyclopropanation using engineered myoglobin-based catalysts.
Using rational design, an engineered myoglobin-based catalyst capable of catalyzing the cyclopropanation of aryl-substituted olefins with catalytic proficiency (up to 46,800 turnovers) and excellent diastereo- and enantioselectivity (98-99.9%) was developed. This transformation could be carried out in the presence of up to 20 g L(-1) olefin substrate with no loss in diastereo- and/or enantiosel...
متن کاملNatural abundance 15N NMR by dynamic nuclear polarization: fast analysis of binding sites of a novel amine-carboxyl-linked immobilized dirhodium catalyst.
A novel heterogeneous dirhodium catalyst has been synthesized. This stable catalyst is constructed from dirhodium acetate dimer (Rh2(OAc)4) units, which are covalently linked to amine- and carboxyl-bifunctionalized mesoporous silica (SBA-15-NH2-COOH). It shows good efficiency in catalyzing the cyclopropanation reaction of styrene and ethyl diazoacetate (EDA) forming cis- and trans-1-ethoxycarbo...
متن کاملHighly Stereoselective Biocatalytic Synthesis of Key Cyclopropane Intermediate to Ticagrelor.
Extending the scope of biocatalysis to important non-natural reactions such as olefin cyclopropanation will open new opportunities for replacing multi-step chemical syntheses of pharmaceutical intermediates with efficient, clean, and highly selective enzyme-catalyzed processes. In this work, we engineered the truncated globin of Bacillus subtilis for the synthesis of a cyclopropane precursor to...
متن کاملStereoselective construction of nitrile-substituted cyclopropanes.
Nitrile-substituted cyclopropanes are readily synthesized in a stereocontrolled fashion from the intermolecular cyclopropanation between 2-diazo-2-phenylacetonitrile and electron-rich olefins, catalyzed by the chiral dirhodium complex, Rh(2)(S-PTAD)(4).
متن کامل